EXAMPLE CALCULATION

WIND CAPTURE:

The total lateral surface area of the vessel above the water line in $m^2 \times 0.5$ (half the boat length) $\times 0.75$ (correction factor) = Lateral wind capture surface area in m^2 .

On the Beaufort scale, the following wind pressure is displayed in Kg per m².

Bf 4 -> 2.2 Kg p/m^2

Bf 5 -> 4.4 Kg p/m^2

Bf 6 -> 7.5 Kg p/m^2

Bf 7 -> 12.0 Kg p/m^2

SITUATION:

A vessel with a length of 7 metres and an average height above the water line of 1.3 metres has a wind capture surface area of 9.1 m2 + a superstructure and rigging with a surface area of 2 m2, making the total wind capture surface area for this vessel 11.1 m2.

Note: Include rigging and superstructure in surface area calculation

EXAMPLE: Thrust pressure calculation in Kgf (kilogram force).

11.1m² x 0.5 x 0.75 = 4.1625 m² x Bf. factor 7.5 = 31.2 Kgf thrust pressure required for wind force up to 6 Bf. Jet Thruster systems by Holland Marine Parts are available with thrust pressures varying from 30 to 90 Kgf. Based on the provided dimensions of the vessel a proposal is made in this module.